On some regularities of graphs. II.

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On common neighborhood graphs II

Let G be a simple graph with vertex set V (G). The common neighborhood graph or congraph of G, denoted by con(G), is a graph with vertex set V (G), in which two vertices are adjacent if and only if they have at least one common neighbor in G. We compute the congraphs of some composite graphs. Using these results, the congraphs of several special graphs are determined.

متن کامل

Regularities on the Cayley Graphs of Groups of Linear Growth

Let G be a finitely generated group and E 5 E 1 < E 2 1 a finite generating system . Define the E -length l E ( g ) of g P G as the minimum length of a representation of g as a product of elements in E , and define f E ( n ) as the number of elements in G with E -length equal to n . We will say that a finitely generated group has polynomial growth if there exists an integer k such that f E ( n ...

متن کامل

On vertex balance index set of some graphs

Let Z2 = {0, 1} and G = (V ,E) be a graph. A labeling f : V → Z2 induces an edge labeling f* : E →Z2 defined by f*(uv) = f(u).f (v). For i ε Z2 let vf (i) = v(i) = card{v ε V : f(v) = i} and ef (i) = e(i) = {e ε E : f*(e) = i}. A labeling f is said to be Vertex-friendly if | v(0) − v(1) |≤ 1. The vertex balance index set is defined by {| ef (0) − ef (1) | : f is vertex-friendly}. In this paper ...

متن کامل

A study on some properties of leap graphs

In a graph G, the first and second degrees of a vertex v is equal to thenumber of their first and second neighbors and are denoted by d(v/G) andd 2 (v/G), respectively. The first, second and third leap Zagreb indices are thesum of squares of second degrees of vertices of G, the sum of products of second degrees of pairs of adjacent vertices in G and the sum of products of firs...

متن کامل

On ‎c‎omputing the general Narumi-Katayama index of some ‎graphs

‎The Narumi-Katayama index was the first topological index defined‎ ‎by the product of some graph theoretical quantities‎. ‎Let $G$ be a ‎simple graph with vertex set $V = {v_1,ldots‎, ‎v_n }$ and $d(v)$ be‎ ‎the degree of vertex $v$ in the graph $G$‎. ‎The Narumi-Katayama ‎index is defined as $NK(G) = prod_{vin V}d(v)$‎. ‎In this paper,‎ ‎the Narumi-Katayama index is generalized using a $n$-ve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Časopis pro pěstování matematiky

سال: 1984

ISSN: 0528-2195

DOI: 10.21136/cpm.1984.118207